Description
A subarray A[i], A[i+1], …, A[j] of A is said to be turbulent if and only if:
- For i <= k < j, A[k] > A[k+1] when k is odd, and A[k] < A[k+1] when k is even;
- OR, for i <= k < j, A[k] > A[k+1] when k is even, and A[k] < A[k+1] when k is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example
Example 1:1
2
3Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:1
2Input: [4,8,12,16]
Output: 2
Example 3:1
2Input: [100]
Output: 1
Note:
- 1 <= A.length <= 40000
- 0 <= A[i] <= 10^9
Solution
Solutio 1: Basic solution, Time O(n), Space O(n)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25class Solution {
// Basic Method: Time: O(n), Space: O(n)
// For each A[i]
// inc: The length of current valid sequence which ends with two increasing numbers
// dec: The length of current valid sequence which ends with two decreasing numbers
public int maxTurbulenceSize(int[] A) {
if (A == null || A.length == 0)
return 0;
int[] inc = new int[A.length];
int[] des = new int[A.length];
int res = 1;
Arrays.fill(inc, 1);
Arrays.fill(des, 1);
for (int i = 1; i < A.length; i++){
if (A[i] > A[i - 1])
inc[i] = des[i - 1] + 1;
else if (A[i] < A[i - 1])
des[i] = inc[i - 1] + 1;
res = Math.max(res, Math.max(inc[i], des[i]));
}
return res;
}
}
Solution 2: Improved Solution, Space O(1)1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26class Solution {
// Improved: O(1) Space; O(N) time
public int maxTurbulenceSize(int[] A) {
if (A == null || A.length == 0)
return 0;
int res = 1;
int inc = 1;
int des = 1;
for (int i = 1; i < A.length; i++){
if (A[i] > A[i - 1]){
inc = des + 1;
des = 1;
}
else if (A[i] < A[i - 1]){
des = inc + 1;
inc = 1;
}
else{
inc = 1;
des = 1;
}
res = Math.max(res, Math.max(inc, des));
}
return res;
}
}