Description
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000 to 1,000,000.
Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10 / \ 5 -3 / \ \ 3 2 11 / \ \ 3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3 2. 5 -> 2 -> 1 3. -3 -> 11
|
Solution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
class Solution { private int res = 0; public int pathSum(TreeNode root, int sum) { if (root == null) return 0; HashMap<Integer, Integer> presum = new HashMap<>(); presum.put(0, 1); helper(presum, root, 0, sum); return res; } private void helper(HashMap<Integer, Integer> presum, TreeNode node, int cur, int target){ if (node == null) return; cur = cur + node.val; if (presum.getOrDefault(cur - target, 0) > 0){ res += presum.get(cur - target); } presum.put(cur, presum.getOrDefault(cur, 0) + 1); helper(presum, node.left, cur, target); helper(presum, node.right, cur, target); presum.put(cur, presum.get(cur) - 1); } }
|