0%

Leetcode133-cloneGraph

Description

Given a reference of a node in a connected undirected graph, return a deep copy (clone) of the graph. Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

Example


1
2
3
4
5
6
7
8
Input:
{"$id":"1","neighbors":[{"$id":"2","neighbors":[{"$ref":"1"},{"$id":"3","neighbors":[{"$ref":"2"},{"$id":"4","neighbors":[{"$ref":"3"},{"$ref":"1"}],"val":4}],"val":3}],"val":2},{"$ref":"4"}],"val":1}

Explanation:
Node 1's value is 1, and it has two neighbors: Node 2 and 4.
Node 2's value is 2, and it has two neighbors: Node 1 and 3.
Node 3's value is 3, and it has two neighbors: Node 2 and 4.
Node 4's value is 4, and it has two neighbors: Node 1 and 3.

Note:

  1. The number of nodes will be between 1 and 100.
  2. The undirected graph is a simple graph, which means no repeated edges and no self-loops in the graph.
  3. Since the graph is undirected, if node p has node q as neighbor, then node q must have node p as neighbor too.
  4. You must return the copy of the given node as a reference to the cloned graph.

Solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> neighbors;

public Node() {}

public Node(int _val,List<Node> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/
class Solution {

public Node cloneGraph(Node node) {
if (node == null) return node;
HashMap<Integer, Node> map = new HashMap<>();
return clone(node, map);
}

private Node clone(Node node, HashMap<Integer, Node> map){
if (node == null) return null;

if (map.containsKey(node.val)) return map.get(node.val);

List<Node> newNeighbors = new ArrayList<>();
Node newNode = new Node(node.val, newNeighbors);
map.put(node.val, newNode);

for (Node n: node.neighbors){
newNode.neighbors.add(clone(n, map));
}

return newNode;
}
}