Description
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example
1 | LRUCache cache = new LRUCache( 2 /* capacity */ ); |
Solution
O(1) soluton1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89class LRUCache {
class doubleList{
int key;
int value;
doubleList pre;
doubleList next;
public doubleList(int key, int value, doubleList pre, doubleList next){
this.key = key;
this.value = value;
this.pre = pre;
this.next = next;
}
public doubleList(){
}
}
private int capacity;
private HashMap<Integer, doubleList> map;
private doubleList head,tail;
public LRUCache(int capacity){
this.capacity = capacity;
map = new HashMap<>();
head = new doubleList();
tail = new doubleList();
}
public int get(int key){
if (map.containsKey(key)){
doubleList cur = map.get(key);
cur.pre.next = cur.next;
cur.next.pre = cur.pre;
cur.next = head.next;
cur.pre = head;
head.next = cur;
cur.next.pre = cur;
map.put(key, cur);
return cur.value;
}
return -1;
}
public void put(int key, int value){
if (map.containsKey(key)){
doubleList cur = map.get(key);
cur.pre.next = cur.next;
cur.next.pre = cur.pre;
cur.next = head.next;
cur.pre = head;
head.next = cur;
cur.next.pre = cur;
cur.value = value;
map.put(key, cur);
}
else{
if (map.size() == 0){
doubleList cur = new doubleList(key, value, head, tail);
head.next = cur;
tail.pre = cur;
map.put(key, cur);
}
else
{
doubleList cur = new doubleList(key, value, head, head.next);
head.next = cur;
cur.next.pre = cur;
map.put(key, cur);
if (map.size() > capacity){
map.remove(tail.pre.key);
tail.pre.pre.next = tail;
tail.pre = tail.pre.pre;
}
}
}
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
O(N) solution1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35class LRUCache {
int capacity;
HashMap<Integer, Integer> map;
LinkedList<Integer> keySet;
public LRUCache(int capacity) {
this.capacity = capacity;
map = new HashMap<>();
keySet = new LinkedList<>();
}
public int get(int key) {
if (map.containsKey(key)){
int value = map.get(key);
if (keySet.removeFirstOccurrence(key)) keySet.offerFirst(key);
return value;
}
return -1;
}
public void put(int key, int value) {
if (map.containsKey(key)){
map.put(key, value);
if (keySet.removeFirstOccurrence(key)){
keySet.offerFirst(key);
}
}
else{
map.put(key, value);
keySet.offerFirst(key);
if (keySet.size() > capacity){
map.remove(keySet.removeLast());
}
}
}
}